17 research outputs found

    Radiogenic power and geoneutrino luminosity of the Earth and other terrestrial bodies through time

    Full text link
    We report the Earth's rate of radiogenic heat production and (anti)neutrino luminosity from geologically relevant short-lived radionuclides (SLR) and long-lived radionuclides (LLR) using decay constants from the geological community, updated nuclear physics parameters, and calculations of the β\beta spectra. We track the time evolution of the radiogenic power and luminosity of the Earth over the last 4.57 billion years, assuming an absolute abundance for the refractory elements in the silicate Earth and key volatile/refractory element ratios (e.g., Fe/Al, K/U, and Rb/Sr) to set the abundance levels for the moderately volatile elements. The relevant decays for the present-day heat production in the Earth (19.9±3.019.9\pm3.0 TW) are from 40^{40}K, 87^{87}Rb, 147^{147}Sm, 232^{232}Th, 235^{235}U, and 238^{238}U. Given element concentrations in kg-element/kg-rock and density ρ\rho in kg/m3^3, a simplified equation to calculate the present day heat production in a rock is: h[μW m3]=ρ(3.387×103K+0.01139Rb+0.04595Sm+26.18Th+98.29U) h \, [\mu \text{W m}^{-3}] = \rho \left( 3.387 \times 10^{-3}\,\text{K} + 0.01139 \,\text{Rb} + 0.04595\,\text{Sm} + 26.18\,\text{Th} + 98.29\,\text{U} \right) The radiogenic heating rate of Earth-like material at Solar System formation was some 103^3 to 104^4 times greater than present-day values, largely due to decay of 26^{26}Al in the silicate fraction, which was the dominant radiogenic heat source for the first 10\sim10 Ma. Assuming instantaneous Earth formation, the upper bound on radiogenic energy supplied by the most powerful short-lived radionuclide 26^{26}Al (t1/2t_{1/2} = 0.7 Ma) is 5.5  ×  \;\times\;1031^{31} J, which is comparable (within a factor of a few) to the planet's gravitational binding energy.Comment: 28 pages, 6 figures, 5 table

    Geoneutrinos and reactor antineutrinos at SNO+

    Get PDF
    In the heart of the Creighton Mine near Sudbury (Canada), the SNO+ detector is foreseen to observe almost in equal proportion electron antineutrinos produced by U and Th in the Earth and by nuclear reactors. SNO+ will be the first long baseline experiment to measure a reactor signal dominated by CANDU cores (\sim55\% of the total reactor signal), which generally burn natural uranium. Approximately 18\% of the total geoneutrino signal is generated by the U and Th present in the rocks of the Huronian Supergroup-Sudbury Basin: the 60\% uncertainty on the signal produced by this lithologic unit plays a crucial role on the discrimination power on the mantle signal as well as on the geoneutrino spectral shape reconstruction, which can in principle provide a direct measurement of the Th/U ratio in the Earth.Comment: 7 pages including 2 figures and 1 table, in XIV International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015) IOP Publishing , published on Journal of Physics: Conference Series 718 (2016) 06200

    Geoneutrinos from the rock overburden at SNO+

    Get PDF
    SNOLAB is one of the deepest underground laboratory in the world with an overburden of 2092 m. The SNO+ detector is designed to achieve several fundamental physics goals as a low-background experiment, particularly measuring the Earth's geoneutrino flux. Here we evaluate the effect of the 2 km overburden on the predicted crustal geoneutrino signal at SNO+. A refined 3D model of the 50 χ 50 km upper crust surrounding the detector and a full calculation of survival probability are used to model the U and Th geoneutrino signal. Comparing this signal with that obtained by placing SNO+ at sea level, we highlight a 1.4+1.8-0.9 TNU signal difference, corresponding to the ∼5% of the total crustal contribution. Finally, the impact of the additional crust extending from sea level up to ∼300 m was estimated

    Studies of MCP-PMTs in the miniTimeCube neutrino detector

    Full text link
    This report highlights two different types of cross-talk in the photodetectors of the miniTimeCube neutrino experiment. The miniTimeCube detector has 24 8×88 \times 8-anode Photonis MCP-PMTs Planacon XP85012, totalling 1536 individual pixels viewing the 2-liter cube of plastic scintillator

    Effects of Heat-Producing Elements on the Stability of Deep Mantle Thermochemical Piles

    Get PDF
    ©2020. American Geophysical Union. All Rights Reserved. Geochemical observations of ocean island and mid-ocean ridge basalts suggest that abundances of heat-producing elements (HPEs: U, Th, and K) vary within the mantle. Combined with bulk silicate Earth models and constraints on the Earth's heat budget, these observations suggest the presence of a more enriched (potentially deep and undepleted) reservoir in the mantle. Such a reservoir may be related to seismically observed deep mantle structures known as large low shear velocity provinces (LLSVPs). LLSVPs might represent thermochemical piles of an intrinsically denser composition, and many studies have shown such piles to remain stable over hundreds of Myr or longer. However, few studies have examined if thermochemical piles can remain stable if they are enriched in HPEs, a necessary condition for them to constitute an enriched HPE reservoir. We conduct a suite of mantle convection simulations to examine the effect of HPE enrichment up to 25× the ambient mantle on pile stability. Model results are evaluated against present-day pile morphology and tested for resulting seismic signatures using self-consistent potential pile compositions. We find that stable piles can form from an initial basal layer of dense material even if the layer is enriched in HPEs, depending on the density of the layer and degree of HPE enrichment, with denser basal layers requiring increased HPE enrichment to form pile-like morphology instead of a stable layer. Thermochemical piles or LLSVPs may therefore constitute an enriched reservoir in the deep mantle

    Political Branding: The Tea Party and Its Use of Participation Branding

    Get PDF
    The emergence of the Tea Party movement in 2009 witnessed the surfacing of a populist, anti-Obama libertarian mobilization within the United States. The Tea Party, a movement that brought together a number of disparate groups—some new, some established—utilized participation branding where the consumer attributed the movement its own identity and brand. Its consumer-facing approach, lack of one single leader, and lack of a detailed party platform, in combination with its impact on the 2010 election races in America, earmarks it as a contemporary and unconventional brand phenomenon worthy of investigation. Copyright © Taylor & Francis Group, LLC

    JUNO Conceptual Design Report

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4σ\sigma, and determine neutrino oscillation parameters sin2θ12\sin^2\theta_{12}, Δm212\Delta m^2_{21}, and Δmee2|\Delta m^2_{ee}| to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. \sim17,000 508-mm diameter PMTs with high quantum efficiency provide \sim75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.Comment: 328 pages, 211 figure

    Insurgent capitalism: Island, bricolage and the re-making of finance

    Get PDF
    Drawing on recent discussions of the material cultures of markets and of financial innovation as bricolage, this paper explores the development of Island, a new share-trading venue set up in 1995. We examine Island's roots in a very specific conflict in the US financial markets and in the information libertarianism of 'hacker culture', and examine the material bricolage involved in Island's construction. The paper also outlines the processes that led to a dramatic 'Latourian' change of scale: Island was originally a 'micro' development on the fringes of US markets, but within little more than a decade key features of Island became close to compulsory, as the nature of North American and Western European share trading changed utterly
    corecore